Welcome!

The meeting will begin momentarily.

How to Use Zoom Webinar:

- Zoom webinar will not permit access to your camera.

- Please submit comments/questions in writing through the Q&A function.

- Written comments/questions can be submitted at any time and will be answered or discussed at designated points during the meeting by the panelists.

- Click "Raise Hand" if you would like to speak your comments/questions at designated points with the panelists. A moderator will grant access to your device’s microphone.
Revitalization of the Historic Core
CONSULTING PARTIES MEETING #13

May 24, 2023
PANEL OF SPEAKERS

MODERATOR

Carly Bond, Historic Preservation Specialist

PRESENTERS / PANELISTS

Brenda Sanchez, FAIA, Sr. Design Manager
Christopher Lethbridge, Architect/Program Manager
Lauren Brandes, RLA, ASLA, Smithsonian Gardens
Matthew Chalifoux, FAIA, Sr. Historic Preservation Architect, EYP-Loring, LLC
Anthony Bochicchio, AIA, Project Manager, EYP-Loring, LLC
Faye Harwell, FASLA, Landscape Architect, RHI (Rhodeside and Harwell)
AGENDA

• Updates

• Review Phase 2 Items
 • Roof Modifications
 • Emergency Egress
 • East Range
 • Fall Protection
 • Roof Access
 • South Entry Ramp
 • Southwest Areaway Modification

• Next Steps

How to Use Zoom Webinar:

• Zoom webinar will not permit access to your camera.

• Please submit comments/questions in writing through the Q&A function.

• Written comments/questions can be submitted at any time and will be answered or discussed at designated points during the meeting by the panelists.

• Click “Raise Hand” if you would like to speak your comments/questions at designated points with the panelists. A moderator will grant access to your device’s microphone.
RoHC Revitalize Castle – Status of Design Review Items

<table>
<thead>
<tr>
<th>Topic</th>
<th>Key Design Issues</th>
<th>Status</th>
<th>Proposed Effect Determination</th>
<th>CP Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE AND LANDSCAPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Landscape Planting Plan</td>
<td>Planting Plan</td>
<td>Reviewed and accepted</td>
<td>No Adverse Effect</td>
<td>CP 11</td>
</tr>
<tr>
<td></td>
<td>Paving Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perimeter Security</td>
<td>Overall layout</td>
<td>Reviewed and accepted</td>
<td></td>
<td>CP 7, CP 8</td>
</tr>
<tr>
<td></td>
<td>Bollards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardened furnishings and signs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Lighting</td>
<td>Jefferson Drive-Olmsted Fixtures Layout</td>
<td>Options reviewed</td>
<td></td>
<td>CP 4</td>
</tr>
<tr>
<td>Seismic Control Joint - Finishes</td>
<td>Metal Finish Infill-Stone, Concrete, Pavers</td>
<td>Options reviewed</td>
<td></td>
<td>CP 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Options reviewed - Olympic Black selected</td>
<td></td>
<td>CP 8, CP 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Entrance</td>
<td>Plan Layout</td>
<td>Options reviewed - preferences provided</td>
<td></td>
<td>CP 11, CP 13</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 11, CP 13</td>
</tr>
<tr>
<td></td>
<td>Kick Rail</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 11, CP 13</td>
</tr>
<tr>
<td>North Entrance</td>
<td>Plan Layout</td>
<td>Reviewed and accepted</td>
<td></td>
<td>CP 7, CP 8</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 11</td>
</tr>
<tr>
<td></td>
<td>Railings</td>
<td>Preliminary presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROOF AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Tower Elevators- Exterior</td>
<td>Overrun penthouses</td>
<td>Reviewed and accepted</td>
<td>Adverse Effect</td>
<td>CP 10</td>
</tr>
<tr>
<td>South Tower Elevators- Interior Effects</td>
<td>Narrowing of the center corridor</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 11</td>
</tr>
<tr>
<td></td>
<td>North wall of Children’s Room</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 11</td>
</tr>
<tr>
<td></td>
<td>Elevator doors and devices</td>
<td>Reviewed - preferences provided</td>
<td></td>
<td>CP 11</td>
</tr>
<tr>
<td></td>
<td>Mosaic Tile Floor at Regents’ Room Entry</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 11</td>
</tr>
<tr>
<td>Replacement of Roof Materials</td>
<td>Slate- match for existing (historic?)</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 12</td>
</tr>
<tr>
<td>Roof Modifications- Energy Improvements</td>
<td>Dimensional changes at edges due to roof</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 13</td>
</tr>
<tr>
<td>Rooftop Mechanical Penthouses</td>
<td>Location and sizes Visibility</td>
<td>All presented- north penthouses not resolved</td>
<td>Adverse Effect</td>
<td>CP 10, CP 11, CP 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All presented- north penthouses not resolved</td>
<td></td>
<td>CP 10, CP 11, CP 12</td>
</tr>
<tr>
<td>East Wing 4th Floor Egress</td>
<td>Guardrail</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 13</td>
</tr>
<tr>
<td></td>
<td>Changes to existing windows (East and West)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning Protection</td>
<td>Layout</td>
<td>Reviewed and accepted</td>
<td>No Adverse Effect</td>
<td>CP 10, CP 11</td>
</tr>
<tr>
<td></td>
<td>Device details</td>
<td>Reviewed and accepted</td>
<td></td>
<td>CP 10</td>
</tr>
<tr>
<td>Fall Protection</td>
<td>Layout</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP 13</td>
</tr>
<tr>
<td></td>
<td>Device details</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RoHC Revitalize Castle – Status of Design Review Items

<table>
<thead>
<tr>
<th>Topic</th>
<th>Key Design Issues</th>
<th>Status</th>
<th>Proposed Effect Determination</th>
<th>CP Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERIOR WALLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement and Restoration of Windows</td>
<td>Replacement- visual appearance, details
Restoration- interior safety panels- details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement of Windows- Interior Effects</td>
<td>Impacts to interior historic finishes (plaster)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Masonry Restoration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Basement Windows</td>
<td>Location and size
Window style
Effect on exterior sandstone</td>
<td>Reviewed and accepted</td>
<td>No Adverse Effect</td>
<td>CP10</td>
</tr>
<tr>
<td>Basement Egress Doors</td>
<td>Location and size
Door style
Effect on exterior sandstone</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP4</td>
</tr>
<tr>
<td>Basement Level Interior Alterations (Effects)</td>
<td>Impacts to interior historic finishes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Lighting (Building)</td>
<td>Visual effect
Location of light sources</td>
<td>Preliminary presentation</td>
<td></td>
<td>CP4</td>
</tr>
<tr>
<td>AREAWAYS AND WINDOW WELLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areaways and Window Wells- Finishes</td>
<td>Below Seneca sandstone
Flooring and seismic joint
Concrete retaining wall
Stairs</td>
<td></td>
<td></td>
<td>CP14</td>
</tr>
<tr>
<td>Emergency Generator</td>
<td>Visibility</td>
<td>Reviewed and accepted</td>
<td>Adverse Effect</td>
<td>CP10</td>
</tr>
</tbody>
</table>
RoHC Revitalize Castle – Status of Design Review Items

- Assessment of Effects Report to be updated as we move through consultation and reach consensus on design actions
- Updated AOE sections will be appended to the Meeting Minutes after each Consulting Parties Meeting and posted to the project webpage.

Assessment of Effects on Historic Resources – Phase 2

The following provides an assessment of effects of the capture or action of Phase 2 of the RoHC Revitalize Castle project. The assessment determination is based on the criteria of adverse effect. For more information and instructions on each action and assessment, please refer to the presentation materials from the past Section 106 Consulting Parties meetings available on the project webpage. Phase 2 contains the remaining design actions for consultation to complete the RoHC Revitalize Castle project. Certain design actions were determined to have an adverse effect during Phase 1 consultation, with additional consultation required on minimization measures during Phase 2 consultation.

Site
- Feature/Action: New Landscape-Planting Plan
 - Design Details:
 - New plantings established by the project limit of disturbance will be replaced in kind.
 - Plants and sidewalks adjacent to Jefferson Drive will have aggregate concrete to match the National Mall standard.
 - Plants within the Haupt Garden and Folger Rose Garden will have hard feet. Granite pavers will be used on the north entrance landscape.
 - Character of the landscape will be maintained, through the same diversity of plant species and heights and number of trees.
 - Tree plantings will be eighty feet setback to prevent biological growth and damage to the Castle’s surroundings. This setback will be minimal enough to maintain the character of the landscape setting.

Additional Information:
- Setting of the Castle is a character defining feature:
 - Haupt Garden is documented in the National Mall Historic District nomination as part of the landscape setting, not as a contributing element.
 - Current tree plantings are immediately adjacent to and touch the Castle. This results in dense shade conditions causing biological growth on the Sereno wall.
 - Setting the trees back eighty feet from the Castle eliminates dense shade conditions against the stone.
 - Landscape setting features a mix of large structural trees (asymmetric and dendritic), large shrubs, small trees, box hedges, and ground cover. Diversity and uniformity of plantings will be maintained.
- Refer to “Tieback Interestingly at the North Entrance” and “Ameliorations at the South Entrance to Improve Access” for proposed changes.
- Changes to the landscape and replacement of plantings will not alter the character of the Castle’s setting.

Image
- Partial site plan – To be updated in Phase 2 consultation.

Assessment of Effects on Historic Resources – Phase 2

RoHC Revitalize Castle – Assessment of Effects on Historic Resources

- Feature/Action: Site
 - Design Details:
 - Security perimeter is required at building entrances and visitor queuing areas.
 - Design is a combination of hardened metal barriers (fixed and retracted), landscape wall for entry, and bollard design.
 - Two fixed bollards will be aligned with the second colonnade of the porte cochere area.
 - Design alternatives are in development for Phase 2 consultation, including size and placement of the integral bollard barriers. Bollard finish; granite material; integral bollard base design; placement of barriers within the porte cochere plans; and size of wall barriers adjacent to the accessible walkways.

Additional Information:
- Setting is a character defining feature:
 - Castle porte cochere is one of 4 from the roadcut curt.
 - At the beginning of construction, perimeter security proposal consisted of a continuous line of bollards and site walls to create a barrier along the afferent drive curv.
 - This design had significant adverse effects on the Castle and National Mall setting, and was concentric on three buildings and the remaining building on afferent drive.
- Phase 2 of Section 106 consultation considered various combinations of hardened metal barriers (fixed and retractable), landscape wall features, and bollards. There was consensus for the heights, sizes, and placement of the integral bollard barriers adjacent to the porte cochere, and for the length of barriers adjacent to the accessible walkways.
- Retractable and fixed bollards measure 30’ in height and 8’ in diameter for visual continuity between the two types.
- Contributes to the cumulative adverse effect on the setting of the Castle and the National Mall Historic District.

Image
- Proposed perimeter security elements at north entry along afferent drive curv.

RoHC Revitalize Castle – Assessment of Effects on Historic Resources

- Feature/Action: Site
 - Design Details:
 - Site entry replacement of existing non-code complaint elevator and stair in the Castle’s South Tower.
 - Proposed elevators are accessible and code compliant, and will be an emergency vertical circulation for the public for levels of the Castle.
 - Two stair elevators with a visible elevator. Overrun are 3’7” above the pavement, with a hopped roof, arched detailing, and glass cladding.
 - Mechanical related to a 30% reduction in vertical area of the North Entrance.
 - Elevator entry and exit points will be removed, and the blue floors removed with temporary construction.

Additional Information:
- Site entry replacement of existing non-code complaint elevator.
- Proposed elevators are accessible and code compliant.
- Overrun are 3’7” above the pavement, with a hopped roof, arched detailing, and glass cladding.
- Mechanical related to a 30% reduction in vertical area of the North Entrance.
- Elevator entry and exit points will be removed, and the blue floors removed with temporary construction.

Image
- Partial site plan – To be updated in Phase 2 consultation.
<table>
<thead>
<tr>
<th>Feature/Action</th>
<th>Summary</th>
<th>Proposed Effect Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Landscape Planting Plan</td>
<td>• Displaced hardscape replaced in-kind
• No changes to existing paths and sidewalks
• Landscape character maintained</td>
<td>No Adverse Effect</td>
</tr>
<tr>
<td>South Tower Elevators – Exterior Alterations</td>
<td>• Through-wall louvers
• Two elevator overruns clad in copper with hipped roof and arched detailing</td>
<td>Adverse Effect</td>
</tr>
<tr>
<td>Emergency Generators</td>
<td>• Two gas generators in the SE areaway
• Maximum height of equipment will not exceed areaway wall</td>
<td>No Adverse Effect
(Does not intensify the adverse effect from the new areaways)</td>
</tr>
<tr>
<td>Installation of Lighting Protection</td>
<td>• 10” air terminals above rooftop features
• Grounding cables in discreet locations</td>
<td>No Adverse Effect</td>
</tr>
<tr>
<td>Exterior Masonry Restoration</td>
<td>• Salvaged Seneca sandstone
• St. Bees sandstone back-up</td>
<td>No Adverse Effect</td>
</tr>
</tbody>
</table>
Comments from Consulting Parties

Existing ramp and door at the southeast corner of the Main Building.
• Large portions of the International Exchange Service moved to the basement of the Castle's Main Building, East Wing, and Range beginning in 1870
• In 1871 the loading ramp and door were installed
Renwick's 1847 Design Specifications:
“All remaining roofs (i.e., of the towers, &c.) above excepted, will be made of the best Welsh slate of large size, and laid in the best manner, according to the directions of the architect.”
ROOF MODIFICATIONS
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOFING | PROPOSED
THICKNESS VISUALIZATION

LEGEND

Roofing Type
- Modified-Bitumen Roofing
- Slate Roofing
- Copper Roofing

- < 1 in. Net Increase in Roof Thickness
- > 1 in. and < 3 in. Net Increase in Roof Thickness
- > 3 in. and < 5 in. Net Increase in Roof Thickness
- 5 in. Net Increase in Roof Thickness

- No Impact to Existing Thickness/Edge Detail Which Would be Visible from Grade
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOF | PROPOSED DIMENSIONAL CHANGE TO ACCOMMODATE INSULATION

EAST WING – SOUTHEAST CORNER OF THE ROOF

EAST WING ROOF

EXISTING CONDITION

7.0 in

4.15 in
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOF | PROPOSED
DIMENSIONAL CHANGE TO ACCOMMODATE INSULATION

EAST RANGE ROOF

+5.25 in at high point

6.5 in

ROOF TAPERS TO MINIMIZE VISUAL IMPACT

EXISTING CONDITION

EAST RANGE – ROOF LOOKING NORTHEAST
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOF | PROPOSED
DIMENSIONAL CHANGE TO ACCOMMODATE INSULATION

MAIN HALL – NORTH ELEVATION ROOF LOOKING WEST

GREAT HALL ROOF

EXISTING CONDITION

+4.75 in

7.0 in
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOF | PROPOSED
DIMENSIONAL CHANGE TO ACCOMMODATE INSULATION

GREAT HALL ROOF

MAIN HALL – WEST END OF NORTH ELEVATION ROOF

EXISTING CONDITION
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOF | PROPOSED
DIMENSIONAL CHANGE TO ACCOMMODATE INSULATION

WEST WING – SOUTHWEST CORNER OF THE ROOF

EXISTING CONDITION

WEST WING ROOF
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOF | PROPOSED DIMENSIONAL CHANGE TO ACCOMMODATE INSULATION

WEST WING – SOUTHWEST CORNER OF THE ROOF

WEST WING ROOF

EXISTING CONDITION

+2 in
5.5 in
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOF | PROPOSED SECTION

CROSS SECTION
HEIGHT OF ROOF FROM GRADE

JEFFERSON DRIVE

SMITHSONIAN REVITALIZATION OF THE HISTORIC CORE
SMITHSONIAN INSTITUTION BUILDING (SIB)

REPLACEMENT MATERIALS | ROOFING SLATE

TEST RESULTS OF EXISTING SLATE

- Performance of existing slate varied greatly
 - 1 of 4 samples do not meet the maximum ASTM Absorption requirement (0.25%)
 - 2 of 4 samples do not meet the minimum breaking load (575 lb-force)
 - 3 out of 4 sample areas did not meet the minimum historic ASTM Modulus of Rupture requirement (9,000 psi)*
- Due to large variation in quality and color, as well as increased risk of breakage, it is recommended that all roofing slate be replaced
- Complete replacement results in uniform color and extended surface life

<table>
<thead>
<tr>
<th>Anticipated Service Life</th>
<th>ASTM C406 Requirements</th>
<th>Grade S1</th>
<th>Grade S2</th>
<th>Grade S3</th>
<th>Test Results of Slate from The Castle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 75 Years</td>
<td>Absorption (% max.)</td>
<td>0.25</td>
<td>0.36</td>
<td>0.45</td>
<td>Sample A** (East Wing)</td>
</tr>
<tr>
<td>40 – 75 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>20 – 40 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Absorption (% max.)</td>
<td>0.36</td>
<td>0.45</td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>Depth of Softening (in., max.)</td>
<td>0.002</td>
<td>0.008</td>
<td>0.014</td>
<td>Sample B** (West Wing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>Breaking Load (lb-force, min.)</td>
<td>575</td>
<td>575</td>
<td>575</td>
<td>Sample D** (Main Building)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.0024</td>
</tr>
<tr>
<td></td>
<td>Modulus of Rupture (psi, min.)*</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
<td>Sample F** (Main Building)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,878</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,881</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,840</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,052</td>
</tr>
</tbody>
</table>

*Modulus of Rupture is no longer part of the ASTM Standard and is reported for information purposes only. The Modulus of Rupture strength requirement was replaced with a breaking load strength requirement when the standard was changed in 2005.

** Results represent testing of a single slate shingle and may not be representative of the slate on the roof as a whole.
SMITHSONIAN INSTITUTION BUILDING (SIB)

REPLACEMENT MATERIALS | ROOFING SLATE
TEST RESULTS OF EXISTING SLATE
SMITHSONIAN INSTITUTION BUILDING (SIB)

REPLACEMENT MATERIALS | ROOFING SLATE

HILLTOP SLATE

VERMONT STRUCTURAL SLATE CO.

EVERGREEN SLATE CO.

8 AM
UPPER: UNFADING GRAY

8 AM
RIGHT: HENDRICKS SLATE

8 AM
LEFT: VERMONT BLACK

12 PM
UPPER: UNFADING GRAY

12 PM
RIGHT: HENDRICKS SLATE

12 PM
LEFT: VERMONT BLACK
SMITHSONIAN INSTITUTION BUILDING (SIB)

REPLACEMENT MATERIALS | ROOFING SLATE

BUCKINGHAM SLATE

In 1847 slate quarries were open in the US in the following locations:

- **Vermont/New York** line (Fairhaven/Granville Area) – since 1839

- **Pennsylvania** (Lehigh area and Peachbottom area) – since 1808 and 1734

- **Virginia** (Buckingham) - since 1700’s

- **The Buckingham Slate Company**
 - NOT a good candidate for SIB
 - NOT producing roofing slate in foreseeable future; only flagstone, decorative stones, etc.
 - Prior test data revealed that the properties of their roofing slate was insufficient

- **The James River Slate Company**
 - Located in Buckingham County, Virginia
 - Quarries and fabricates an excellent quality, highly durable roofing slate - “Grayson Slate”
 - tested by SGH and found to have excellent technical properties

WHERE DO AMERICAN ROOF SLATES COME FROM?

- ★ = Inactive roof slate production today
- ✦ = Active roof slate production today

All regions were active at the time most older American roofs were installed.

LOCATIONS OF AMERICAN ROOF SLATES
EMERGENCY EGRESS
EAST RANGE
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
EXISTING CONDITIONS
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
PREVIOUS DESIGN STUDY – PRESENTED CP4

Option 1 - Historic Rooftop Connector

Existing Louvered Penthouse

Option 2 - Modern Rooftop Connector

Option 3 - Rooftop Egress Walkway

*APPROVED BY CFA AND NCPC
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
UPDATED APPROACH

Line of railing of preferred egress connection.
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
PROPOSED PLAN
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
MAIN BUILDING ELEVATION (EAST)
INSERTION OF DOOR AT EXISTING WINDOW

EXISTING

EXISTING
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
MAIN BUILDING ELEVATION (EAST)
INSERTION OF DOOR AT EXISTING WINDOW

EXISTING

PROPOSED
"NO ALTERATION TO HISTORIC SANDSTONE"
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
EAST WING ELEVATION (WEST)
INSERTION OF DOOR IN EXISTING WINDOW OPENING

EXISTING
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
EAST WING ELEVATION (WEST)
INSERTION OF DOOR IN EXISTING WINDOW OPENING

EXISTING

PROPOSED
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
ELEVATIONS – MASONRY ALTERATIONS

EXISTING

EXISTING SENECAN SANDSTONE UNIT
EXISTING FLASHING

PROPOSED

*NO ALTERATION TO HISTORIC SANDSTONE
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS

OPTION 1

GUARDRAIL

LIGHT POST AT EACH POST, TYP., RE. ELEC

BOTTOM RAIL

3’ - 6”

OPTION 2 - PREFERRED

GUARDRAIL

LIGHT POST AT EACH POST, TYP., RE. ELEC

BOTTOM RAIL

3’ - 6”

INTEGRATED LIGHT POST
*LIGHTING ON EMERGENCY CIRCUIT ONLY
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
EXISTING ELEVATION

EXISTING
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
PROPOSED ELEVATION
OPTION 1

ELEVATION – OPTION 1

GATE FOR ROOF ACCESS

3'-6"

62' - 1"

SIB-LEVEL 4 EAST WING
21071
71'-1 1/4"
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
PROPOSED ELEVATION
OPTION 2 - PREFERRED

GATE FOR
ROOF ACCESS

ELEVATION – OPTION 2

62' - 1"
SMITHSONIAN INSTITUTION BUILDING (SIB)

EAST RANGE
4TH FLOOR - SECOND MEANS OF EGRESS
RAILING DESIGN
OPTION 1

VIEW FROM NATIONAL MALL

VIEW FROM HAUPPT GARDEN

3'-6"

NOT TO SCALE
Questions or Comments

MODERATOR
Carly Bond, Historic Preservation Specialist

PRESENTERS / PANELISTS
Brenda Sanchez, FAIA, Sr. Design Manager
Christopher Lethbridge, Architect/Program Manager
Lauren Brandes, RLA, ASLA, Smithsonian Gardens
Matthew Chalifoux, FAIA, Sr. Historic Preservation Architect, EYP-Loring, LLC
Anthony Bochicchio, AIA, Project Manager, EYP-Loring, LLC
Faye Harwell, FASLA, Landscape Architect, RHI (Rhodeside and Harwell)
FALL PROTECTION
SMITHSONIAN INSTITUTION BUILDING (SIB)

FALL AND LIGHTNING PROTECTION | PROPOSED
INSTALLATION EXAMPLE AT AIB

EXAMPLE OF REDIRECT STANCHION

EXAMPLE OF REDIRECT STANCHION AND HORIZONTAL LIFELINE
SMITHSONIAN INSTITUTION BUILDING (SIB)

FALL AND LIGHTNING PROTECTION | PROPOSED

ROOF PLAN
SMITHSONIAN INSTITUTION BUILDING (SIB)

FALL AND LIGHTNING PROTECTION | PROPOSED

ROOF PLAN
SMITHSONIAN INSTITUTION BUILDING (SIB)

FALL AND LIGHTNING PROTECTION | PROPOSED

ROOF PLAN

[Image of a 3D architectural plan showing proposed fall and lightning protection measures on the roof of the SIB.]
SMITHSONIAN INSTITUTION BUILDING (SIB)

FALL AND LIGHTNING PROTECTION | PROPOSED
INSTALLATION EXAMPLE AT AIB

VISIBILITY OF FALL PROTECTION - FROM GROUND

VISIBILITY OF FALL PROTECTION - BIRDSEYE
ROOF ACCESS
SMITHSONIAN INSTITUTION BUILDING (SIB)

ROOF ACCESS | MAIN BUILDING
VISUALIZATION

ROOF ACCESS – OPTION A
PLATFORM AND LADDER FROM FLAG AND NORTH TOWER STANCHIONS AND HORIZONTAL LIFELINES

ROOF ACCESS – OPTION B (PREFERRED)
SINGLE ROOF HATCH BETWEEN TOWERS STANCHIONS AND HORIZONTAL LIFELINES
Hatch location is determined by:
- existing elements and waterproofing requirements (buttress, wall, and roof ridge)
- location of attic level equipment hoist
SIB SOUTH ENTRANCE
PAVING, CURB, AND RAILING OPTIONS
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | EXISTING CONDITIONS
PLAN AS SHOWN IN CP12
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | PROPOSED PLAN
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | PAVING MATERIAL
OPTION A – OLYMPIC BLACK SEISMIC JOINT COVER AND BRICK PAVING
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | PAVING MATERIAL
OPTION B – OLYMPIC BLACK SEISMIC JOINT COVER AND PLANTED AREA
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | CURB & RAILING STUDY
EXISTING CONDITIONS

EXISTING CONDITIONS

EXISTING HANDRAIL

EXISTING GRANITE CURB (MOUNT AIRY)

EXISTING TREAD TO REMAIN (SANDSTONE)

EXISTING TREAD AT GRADE LEVEL TO REMAIN (SANDSTONE)

CARNELIAN GRANITE PAVING

EXISTING HANDRAIL (12 IN HT FROM ADJACENT WALKING SURFACE)

EXISTING GRANITE CURB (MOUNT AIRY)

EXISTING TREAD TO REMAIN (SANDSTONE)

EXISTING TREAD AT GRADE LEVEL TO REMAIN (SANDSTONE)

CARNELIAN GRANITE PAVING

EXISTING SANDSTONE LANDING TO REMAIN

BRICK PAVING OVER EXISTING TREAD

22 IN

1.25 IN

Smithsonian Institution
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | CURB & RAILING STUDY
CURB HEIGHT

CURB HEIGHT LEVEL WITH ADJACENT WALKING SURFACE FROM SIB TO SEISMIC JOINT, THEN STAYS LEVEL AS WALKING SURFACE SLOPES AWAY

CURB HEIGHT LEVEL WITH ADJACENT WALKING SURFACE FROM SIB TO SEISMIC JOINT, THEN STEPS UP TO MATCH HEIGHT OF CURB AT PLANTER
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | CURB & RAILING STUDY

OPTION 1 - PREFERRED

OPTION 2

OPTION 3
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | CURB & RAILING STUDY
OPTION 1 - PREFERRED
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | CURB & RAILING STUDY
OPTION 2

PLAN

AXON LOOKING NORTH AT SOUTH ENTRANCE LANDING AND WESTERN CURB

SECTION FROM WALKING SURFACE LOOKING WEST
SMITHSONIAN INSTITUTION BUILDING (SIB)

SIB SOUTH ENTRANCE | CURB & RAILING STUDY
OPTION 3
SOUTHWEST AREAWAY MODIFICATION
SMITHSONIAN INSTITUTION BUILDING (SIB)

SOUTHWEST (W) AREAWAY | MODIFICATION
CURRENT PROPOSAL

Original proposal based on 2” concrete formliner, available information regarding joint cover clearance, and schematic calculated egress widths

Continued CD development and updated information requires additional clearances for:

A. Converging egress point; critical to maintain required egress width (46”)
B. Seismic joint cover movement (18” joint + 6” movement = 24”)
C. Tolerance for areaway finish materials (pending future Consulting Parties review; allocating 5” for material)

Modifications result in 2” remaining space for joint cover movement; 24” joint cover movement is required

• Requires stair to shift 22” south
SMITHSONIAN INSTITUTION BUILDING (SIB)

SOUTHWEST (W) AREAWAY | MODIFICATION
UPDATED PROPOSAL

Changes:
- Increased space for facing material to 5"
- Retaining wall at stair shifted 22” south
- Stair landing extended 14” west

*Retaining wall intersection at building does not change
SMITHSONIAN INSTITUTION BUILDING (SIB)

SOUTHWEST (W) AREAWAY | MODIFICATION
UPDATED PROPOSAL

Section Details:
- Finish materials TBD, pending future CP review
- 5” of depth allocated for finish wall material (TBD)
- Minimum 24” clearance at seismic joint
- Minimum 46” egress clearance
- Guardrail centered over structure below

TYPICAL SEISMIC JOINT COVER
SMITHSONIAN INSTITUTION BUILDING (SIB)

SOUTHWEST (W) AREAWAY | MODIFICATION
UPDATED PROPOSAL

AXON (PROPOSED MODIFICATION)

ELEVATION (CURRENT)

ELEVATION (PROPOSED MODIFICATION)
SMITHSONIAN INSTITUTION BUILDING (SIB)

SOUTHWEST (W) AREAWAY | MODIFICATION
VISUALIZATION (LOOKING NW)

CURRENT DESIGN

PROPOSED MODIFICATION

EXISTING CONDITION

Smithsonian Institution
SMITHSONIAN INSTITUTION BUILDING (SIB)

SOUTHWEST (W) AREAWAY | MODIFICATION
VISUALIZATION (LOOKING NW)

CURRENT DESIGN

PROPOSED MODIFICATION
SMITHSONIAN INSTITUTION BUILDING (SIB)

SOUTHWEST (W) AREAWAY | MODIFICATION
VISUALIZATION (LOOKING NE)

CURRENT DESIGN

PROPOSED MODIFICATION

EXISTING CONDITION

Smithsonian Institution
SMITHSONIAN INSTITUTION BUILDING (SIB)

SOUTHWEST (W) AREAWAY | MODIFICATION VISUALIZATION (LOOKING NE)

CURRENT DESIGN

PROPOSED MODIFICATION

Smithsonian Institution
Upcoming Section 106 Consultation Meetings

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
<th>Meeting Content *</th>
</tr>
</thead>
</table>
| Consulting Parties Meeting #14| June 28, 2023 | • Final Planting Plan
 • Perimeter Security- Jefferson Drive
 • All hardened elements
 • North Ramps/ Sloped Sidewalks
 • Exterior Signage
 • Appearance only, not content
 • Areaway Finishes
 • Includes final layouts/dimensions
 • Exterior Lighting
 • Jefferson Drive Olmsted fixtures
 • Building lighting including location of fixtures |
| Consulting Parties Meeting #15| July 26, 2023 | • Basement Windows and Doors
 • Including Interior Effects
 • Window Replacement
 • Exterior Appearance/ Detailing
 • Anchorage Details
 • Interior Effects |

Phase 2 Section 106 Consultation Continues through 2023

Assessment of Effects on Historic Resources Report will be revised through consultation for Phase 2 actions
RoHC Revitalize Castle – Next Steps

- Programmatic Agreement executed March 29, 2023
- Thank for your support and assistance with this critical project!
- Comments are welcoming in writing anytime to: BondC@si.edu
- Contact Carly with questions or any trouble with the recurring Zoom Webinar.

Please visit the project webpage: https://www.sifacilities.si.edu/historic-core
Questions or Comments

MODERATOR
Carly Bond, Historic Preservation Specialist

PRESENTERS / PANELISTS
Brenda Sanchez, FAIA, Sr. Design Manager
Christopher Lethbridge, Architect/Program Manager
Lauren Brandes, RLA, ASLA, Smithsonian Gardens
Matthew Chalifoux, FAIA, Sr. Historic Preservation Architect, EYP-Loring, LLC
Anthony Bo chicchio, AIA, Project Manager, EYP-Loring, LLC
Faye Harwell, FASLA, Landscape Architect, RHI (Rhodeside and Harwell)